Dynamic model based formation control and obstacle avoidance of multi-robot systems
نویسندگان
چکیده
This work presents, first, a complete dynamic model of a unicycle-like mobile robot that takes part in a multirobot formation. A linear parameterization of this model is performed in order to identify the model parameters. Then, the robot model is input-output feedback linearized. On a second stage, for the multi-robot system, a model is obtained by arranging into a single equation all the feedback linearized robot models. This multi-robot model is expressed in terms of formation states by applying a coordinate transformation. The inverse dynamics technique is then applied to design a formation control. The controller can be applied both to positioning and to tracking desired robot formations. The formation control can be centralized or decentralized and scalable to any number of robots. A strategy for rigid formation obstacle avoidance is also proposed. Experimental results validate the control system design.
منابع مشابه
Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملFormation Control of Heterogeneous Multi-Robot Systems
In this paper, a new position feedback based formation control method for heterogeneous multi-robot teams is presented and evaluated. The formation behaviors are integrated with dynamic reference object based collaborative navigation and efficient obstacle avoidance to maintain and change formation real-time. This method is computationally efficient and easy to coordinate in heterogeneous syste...
متن کاملMulti-Robot Systems Formation Control with Obstacle Avoidance
This paper deals with the problem of active target tracking with obstacle avoidance for multi-robot systems. A nonlinear model predictive formation control is presented which uses potential functions as terms of the cost function. These terms penalize the proximity with mates and obstacles, splitting the problem of obstacle avoidance into two repulse functions. Experimental results with real ro...
متن کاملOptimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملTime-Variant Artificial Potential Fields in Dynamic Collision Avoidance for Multi-Robot Formation
In this paper, a new algorithm for controlling mobile robot flexible formation based on multiple control objectives is presented. The strategy includes the use of null space for shape and posture control. The obstacle avoidance strategy is based on the definition of fictitious potential energy. The primary objective established is to shape control and obstacle avoidance, whereas the secondary o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotica
دوره 26 شماره
صفحات -
تاریخ انتشار 2008